Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684700

RESUMEN

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Ratones , Quimioradioterapia/métodos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Tolerancia a Radiación , Proteínas Señalizadoras YAP/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteómica
2.
Cell Rep ; 36(3): 109395, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289351

RESUMEN

Arteries and veins form in a stepwise process that combines vasculogenesis and sprouting angiogenesis. Despite extensive data on the mechanisms governing blood vessel assembly at the single-cell level, little is known about how collective cell migration contributes to the organization of the balanced distribution between arteries and veins. Here, we use an endothelial-specific zebrafish reporter, arteriobow, to label small cohorts of arterial cells and trace their progeny from early vasculogenesis throughout arteriovenous remodeling. We reveal that the genesis of arteries and veins relies on the coordination of 10 types of collective cell dynamics. Within these behavioral categories, we identify a heterogeneity of collective cell motion specific to either arterial or venous remodeling. Using pharmacological blockade, we further show that cell-intrinsic Notch signaling and cell-extrinsic blood flow act as regulators in maintaining the heterogeneity of collective endothelial cell behavior, which, in turn, instructs the future territory of arteriovenous remodeling.


Asunto(s)
Arterias/fisiología , Rastreo Celular , Células Endoteliales/citología , Remodelación Vascular/fisiología , Venas/fisiología , Animales , Animales Modificados Genéticamente , Células Clonales , Células Endoteliales/metabolismo , Genes Reporteros , Receptores Notch/metabolismo , Flujo Sanguíneo Regional , Reología , Transducción de Señal , Pez Cebra
3.
Matrix Biol ; 88: 33-52, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759052

RESUMEN

Lysyl oxidases are major actors of microenvironment and extracellular matrix (ECM) remodeling. These cross-linking enzymes are thus involved in many aspects of physiopathology, including tumor progression, fibrosis and cardiovascular diseases. We have already shown that Lysyl Oxidase-Like 2 (LOXL2) regulates collagen IV deposition by endothelial cells and angiogenesis. We here provide evidence that LOXL2 also affects deposition of other ECM components, including fibronectin, thus altering structural and mechanical properties of the matrix generated by endothelial cells. LOXL2 interacts intracellularly and directly with collagen IV and fibronectin before incorporation into ECM fibrillar structures upon exocytosis, as demonstrated by TIRF time-lapse microscopy. Furthermore, surface plasmon resonance experiments using recombinant scavenger receptor cysteine-rich (SRCR) domains truncated for the catalytic domain demonstrated their direct binding to collagen IV. We thus used directed mutagenesis to investigate the role of LOXL2 catalytic domain. Neither enzyme activity nor catalytic domain were necessary for collagen IV deposition and angiogenesis, whereas the SRCR domains were effective for these processes. Finally, surface coating with recombinant SRCR domains restored deposition of collagen IV by LOXL2-depleted cells. We thus propose that LOXL2 SRCR domains orchestrate scaffolding of the vascular basement membrane and angiogenesis through interactions with collagen IV and fibronectin, independently of the enzymatic cross-linking activity.


Asunto(s)
Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Aminoácido Oxidorreductasas/genética , Animales , Sitios de Unión , Línea Celular , Colágeno Tipo IV/metabolismo , Dermis/citología , Dermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mutagénesis Sitio-Dirigida , Neovascularización Fisiológica , Dominios Proteicos , Pez Cebra , Proteínas de Pez Cebra/genética
4.
NPJ Regen Med ; 4: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452940

RESUMEN

The lymphatic vasculature mediates essential physiological functions including fluid homeostasis, lipid and hormone transport, and immune cell trafficking. Recent studies have suggested that promoting lymphangiogenesis enhances cardiac repair following injury, but it is unknown whether lymphangiogenesis is required for cardiac regeneration. Here, we describe the anatomical distribution, regulation, and function of the cardiac lymphatic network in a highly regenerative zebrafish model system using transgenic reporter lines and loss-of-function approaches. We show that zebrafish lacking functional vegfc and vegfd signaling are devoid of a cardiac lymphatic network and display cardiac hypertrophy in the absence of injury, suggesting a role for these vessels in cardiac tissue homeostasis. Using two different cardiac injury models, we report a robust lymphangiogenic response following cryoinjury, but not following apical resection injury. Although the majority of mutants lacking functional vegfc and vegfd signaling were able to mount a full regenerative response even in the complete absence of a cardiac lymphatic vasculature, cardiac regeneration was severely impaired in a subset of mutants, which was associated with heightened pro-inflammatory cytokine signaling. These findings reveal a context-dependent requirement for the lymphatic vasculature during cardiac growth and regeneration.

5.
Development ; 145(10)2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773646

RESUMEN

Despite the essential role of the lymphatic vasculature in tissue homeostasis and disease, knowledge of the organ-specific origins of lymphatic endothelial progenitor cells remains limited. The assumption that most murine embryonic lymphatic endothelial cells (LECs) are venous derived has recently been challenged. Here, we show that the embryonic dermal blood capillary plexus constitutes an additional, local source of LECs that contributes to the formation of the dermal lymphatic vascular network. We describe a novel mechanism whereby rare PROX1-positive endothelial cells exit the capillary plexus in a Ccbe1-dependent manner to establish discrete LEC clusters. As development proceeds, these clusters expand and further contribute to the growing lymphatic system. Lineage tracing and analyses of Gata2-deficient mice confirmed that these clusters are endothelial in origin. Furthermore, ectopic expression of Vegfc in the vasculature increased the number of PROX1-positive progenitors within the capillary bed. Our work reveals a novel source of lymphatic endothelial progenitors employed during construction of the dermal lymphatic vasculature and demonstrates that the blood vasculature is likely to remain an ongoing source of LECs during organogenesis, raising the question of whether a similar mechanism operates during pathological lymphangiogenesis.


Asunto(s)
Capilares/citología , Células Endoteliales/citología , Proteínas de Homeodominio/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Células Madre/citología , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de Unión al Calcio/genética , Factor de Transcripción GATA2/genética , Linfangiogénesis/genética , Vasos Linfáticos/citología , Ratones , Ratones Transgénicos , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Factor C de Crecimiento Endotelial Vascular/genética
7.
Development ; 144(14): 2629-2639, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619820

RESUMEN

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Malformaciones Arteriovenosas/embriología , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Receptor Notch1/deficiencia , Factores de Transcripción SOXF/deficiencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Development ; 144(10): 1887-1895, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28512199

RESUMEN

SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types.


Asunto(s)
Diferenciación Celular/genética , Folículo Piloso/embriología , Cabello/embriología , Factores de Transcripción SOXF/fisiología , Animales , Dermis/embriología , Dermis/metabolismo , Embrión de Mamíferos , Células Epidérmicas , Epidermis/embriología , Femenino , Genes Dominantes , Genes de Cambio/fisiología , Cabello/metabolismo , Folículo Piloso/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factores de Transcripción SOXF/genética
9.
Nat Neurosci ; 20(6): 774-783, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28459441

RESUMEN

Mural cells of the vertebrate brain maintain vascular integrity and function, play roles in stroke and are involved in maintenance of neural stem cells. However, the origins, diversity and roles of mural cells remain to be fully understood. Using transgenic zebrafish, we identified a population of isolated mural lymphatic endothelial cells surrounding meningeal blood vessels. These meningeal mural lymphatic endothelial cells (muLECs) express lymphatic endothelial cell markers and form by sprouting from blood vessels. In larvae, muLECs develop from a lymphatic endothelial loop in the midbrain into a dispersed, nonlumenized mural lineage. muLEC development requires normal signaling through the Vegfc-Vegfd-Ccbe1-Vegfr3 pathway. Mature muLECs produce vascular growth factors and accumulate low-density lipoproteins from the bloodstream. We find that muLECs are essential for normal meningeal vascularization. Together, these data identify an unexpected lymphatic lineage and developmental mechanism necessary for establishing normal meningeal blood vasculature.


Asunto(s)
Células Endoteliales/fisiología , Meninges/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Factores de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Femenino , Lipoproteínas LDL/metabolismo , Masculino , Meninges/crecimiento & desarrollo , Meninges/metabolismo , Meninges/fisiología , Transducción de Señal/fisiología , Factores de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Cell Rep ; 13(9): 1828-41, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655899

RESUMEN

Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics during fate restriction. In the cardinal vein, cellular commitment is linked with the division of bipotential Prox1-positive precursor cells, which occurs immediately prior to sprouting angiogenesis. Following precursor division, identities are established asymmetrically in daughter cells; one daughter cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , División Celular , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas de Homeodominio/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/citología , Microscopía Confocal , Neovascularización Fisiológica , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra/crecimiento & desarrollo
11.
Sci Signal ; 8(385): ra70, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26175493

RESUMEN

Sprouting angiogenesis is stimulated by vascular endothelial growth factor (VEGF165) that is localized in the extracellular matrix (ECM) and binds to heparan sulfate (HS)-bearing proteins known as heparan sulfate proteoglycans (HSPGs). VEGF165 presentation by HSPGs enhances VEGF receptor-2 (VEGFR2) signaling. We investigated the effect of TG2, which binds to HSPGs, on the interaction between VEGF165 and HS and angiogenesis. Mice with tg2 deficiency showed transiently enhanced retina vessel formation and increased vascularization of VEGF165-containing Matrigel implants. In addition, endothelial cells in which TG2 was knocked down exhibited enhanced VEGF165-induced sprouting and migration, which was associated with increased phosphorylation of VEGFR2 at Tyr(951) and its targets Src and Akt. TG2 knockdown did not affect the phosphorylation of VEGFR2 at Tyr(1175) or cell proliferation in response to VEGF165 and sprouting or signaling in response to VEGF121. Decreased phosphorylation of VEGFR2 at Tyr(951) was due to ECM-localized TG2, which reduced the binding of VEGF165 to endothelial ECM in a manner that required its ability to bind to HS but not its catalytic activity. Surface plasmon resonance assays demonstrated that TG2 impeded the interaction between VEGF165 and HS. These results show that TG2 controls the formation of VEGF165-HSPG complexes and suggest that this regulation could be pharmacologically targeted to modulate developmental and therapeutic angiogenesis.


Asunto(s)
Endotelio Vascular/patología , Proteínas de Unión al GTP/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Transglutaminasas/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Proteínas de Unión al GTP/metabolismo , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neovascularización Fisiológica , Fosforilación , Proteína Glutamina Gamma Glutamiltransferasa 2 , Retina/patología , Vasos Retinianos/patología , Transducción de Señal , Resonancia por Plasmón de Superficie , Transglutaminasas/metabolismo
12.
Microvasc Res ; 96: 3-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25107456

RESUMEN

Despite its essential roles in development and disease, the lymphatic vascular system has been less studied than the blood vascular network. In recent years, significant advances have been made in understanding the mechanisms that regulate lymphatic vessel formation, both during development and in pathological conditions. Remarkably, lymphatic endothelial cells are specified as a subpopulation of pre-existing venous endothelial cells. Here, we summarize the current knowledge of the transcription factor pathways responsible for lymphatic specification and we also focus on the factors that promote or restrict this event.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Vasos Linfáticos/fisiología , Animales , Movimiento Celular , Biología Evolutiva , Humanos , Linfedema/metabolismo , Ratones , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra
13.
Cell Rep ; 7(3): 623-33, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24767999

RESUMEN

Lymphatic vessels arise during development through sprouting of precursor cells from veins, which is regulated by known signaling and transcriptional mechanisms. The ongoing elaboration of vessels to form a network is less well understood. This involves cell polarization, coordinated migration, adhesion, mixing, regression, and shape rearrangements. We identified a zebrafish mutant, lymphatic and cardiac defects 1 (lyc1), with reduced lymphatic vessel development. A mutation in polycystic kidney disease 1a was responsible for the phenotype. PKD1 is the most frequently mutated gene in autosomal dominant polycystic kidney disease (ADPKD). Initial lymphatic precursor sprouting is normal in lyc1 mutants, but ongoing migration fails. Loss of Pkd1 in mice has no effect on precursor sprouting but leads to failed morphogenesis of the subcutaneous lymphatic network. Individual lymphatic endothelial cells display defective polarity, elongation, and adherens junctions. This work identifies a highly selective and unexpected role for Pkd1 in lymphatic vessel morphogenesis during development.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Ganglios Linfáticos/crecimiento & desarrollo , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fenotipo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/antagonistas & inhibidores , Canales Catiónicos TRPP/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Blood ; 123(7): 1102-12, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24269955

RESUMEN

Vascular endothelial growth factor-D (VEGFD) is a potent pro-lymphangiogenic molecule during tumor growth and is considered a key therapeutic target to modulate metastasis. Despite roles in pathological neo-lymphangiogenesis, the characterization of an endogenous role for VEGFD in vascular development has remained elusive. Here, we used zebrafish to assay for genetic interactions between the Vegf/Vegf-receptor pathway and SoxF transcription factors and identified a specific interaction between Vegfd and Sox18. Double knockdown zebrafish embryos for Sox18/Vegfd and Sox7/Vegfd exhibit defects in arteriovenous differentiation. Supporting this observation, we found that Sox18/Vegfd double but not single knockout mice displayed dramatic vascular development defects. We find that VEGFD-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase signaling modulates SOX18-mediated transcription, functioning at least in part by enhancing nuclear concentration and transcriptional activity in vascular endothelial cells. This work suggests that VEGFD-mediated pathologies include or involve an underlying dysregulation of SOXF-mediated transcriptional networks.


Asunto(s)
Vasos Sanguíneos/embriología , Neovascularización Fisiológica/genética , Factores de Transcripción SOXF/metabolismo , Factor D de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción SOXF/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
15.
Mol Cell Biol ; 33(12): 2388-401, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23572561

RESUMEN

Transforming growth factor ß1 (TGF-ß1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-ß1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-ß1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-ß1 to induce LOXL4 expression. Functional cooperation between Smad proteins and the AP-1 complex composed of JunB/Fra2 accounted for the action of TGF-ß1, which involved the extracellular signal-regulated kinase (ERK)-dependent phosphorylation of Fra2. We furthermore provide evidence that LOXL4 was extracellularly secreted and significantly contributed to ECM deposition and assembly. These results suggest that TGF-ß1-dependent expression of LOXL4 plays a role in vascular ECM homeostasis, contributing to vascular processes associated with ECM remodeling and fibrosis.


Asunto(s)
Antígeno 2 Relacionado con Fos/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Proteínas Smad/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Aorta/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Sitios de Unión/fisiología , Bovinos , Células Cultivadas , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Antígeno 2 Relacionado con Fos/genética , Células HEK293 , Humanos , Ratones , Fosforilación , Regiones Promotoras Genéticas , Proteína-Lisina 6-Oxidasa/biosíntesis , Proteína-Lisina 6-Oxidasa/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/genética
16.
Blood ; 118(14): 3979-89, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21835952

RESUMEN

Sprouting angiogenesis is associated with extensive extracellular matrix (ECM) remodeling. The molecular mechanisms involved in building the vascular microenvironment and its impact on capillary formation remain elusive. We therefore performed a proteomic analysis of ECM from endothelial cells maintained in hypoxia, a major stimulator of angiogenesis. Here, we report the characterization of lysyl oxidase-like protein-2 (LOXL2) as a hypoxia-target expressed in neovessels and accumulated in the endothelial ECM. LOXL2 belongs to the lysyl oxidase family of secreted enzymes involved in ECM crosslinking. Knockdown experiments in Tg(fli1:egfp)y1 zebrafish embryos resulted in lack of intersegmental vessel circulation and demonstrated LOXL2 involvement in proper capillary formation. Further investigation in vitro by loss and gain of function experiments confirmed that LOXL2 was required for tubulogenesis in 3D fibrin gels and demonstrated that this enzyme was required for collagen IV assembly in the ECM. In addition, LOXL2 depletion down-regulated cell migration and proliferation. These data suggest a major role for LOXL2 in the organization of endothelial basal lamina and in the downstream mechanotransductive signaling. Altogether, our study provides the first evidence for the role of LOXL2 in regulating angiogenesis through collagen IV scaffolding.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Células Endoteliales/citología , Neovascularización Fisiológica , Aminoácido Oxidorreductasas/genética , Animales , Hipoxia de la Célula , Línea Celular , Movimiento Celular , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Matriz Extracelular/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
PLoS One ; 3(8): e3000, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18714380

RESUMEN

BACKGROUND: The physiological function of the ubiquitous cellular prion protein, PrP(c), is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrP(c) is targeted to cell-cell junctions of polarized epithelial cells, where it interacts with c-Src. METHODOLOGY/FINDINGS: We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrP(c) is differentially targeted either to the nucleus in dividing cells or to cell-cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrP(c) interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrP(c), desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrP(c) is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrP(c) knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. CONCLUSIONS/SIGNIFICANCE: From these results, PrP(c) could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.


Asunto(s)
División Celular/fisiología , Células Epiteliales/citología , Uniones Intercelulares/fisiología , Proteínas PrPC/fisiología , Células CACO-2 , Polaridad Celular , Células Epiteliales/fisiología , Humanos , Lípidos/farmacología , Plásmidos , Proteínas PrPC/genética , ARN Interferente Pequeño/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...